However, the team discovered that it was not all about cooling the carbon molecules to such low temperatures. Previous attempts to study C3 soot precursors evaporated the C3 and then trapped it in solid neon or argon ice. This was a problem when studying precursor structures and chemical interactions because the molecules can’t move in the ice.
AFRL’s method relies on submerging the molecule in a helium liquid, allowing the molecule to still move and rotate. So another key advantage of the new method is the ability to investigate interactions with other molecules and study the structures they make together. This is something that researchers haven’t been able to do before.
“It can still wiggle. The method is able to cool things down – but cool them down in a way that they don’t really perturb the molecular structure, while we use infrared spectroscopy to study the molecules,” Lewis added.
A logical consequence would be to use this data and data from follow-on experiments where they interact it with combustion-relevant and space chemistry molecules and use that data to improve current chemistry models.
“Whether it’s a fuel application in terms of the emissions that are going to come out of a combustor, whether it’s some chemistry that is going to happen in space, what flow is going to happen around a reentering space vehicle, you need to be able to understand the fundaments steps in chemistry. This helps us do that because then we can take the molecules that we are interested in and bring them together, and let them talk to each other and then just listen in on the conversation,” Lewis added.
In the turbine engine community, an improved chemistry model could reduce sooting in emissions and possibly improve combustion efficiency. The space vehicles community would see a different payoff. Carbon molecules that evaporate from space vehicles react with the surrounding air, creating their own type of combustion during reentry. The chemistry in the flow layers around the vehicle changes how it flies. Improved chemical models can lead to an improved ability to control the vehicle upon reentry.
Editor's Note: This article was originally produced for the Wright-Patterson AFB website and is considered public information. The appearance of hyperlinks in this newsletter do not constitute endorsement by Wright-Patterson AFB and the United States Air Force does not exercise any editorial control over the information you may find at these locations or the privacy and user policies of these locations.
=================================================================
source:https://www.daytondailynews.com/news/new-method-gives-researchers-first-look-super-cold-carbon-molecules/jXOpaNLCplPIQwkh8yZdFI/
Post a Comment Blogger Facebook
Click to see the code!
To insert emoticon you must added at least one space before the code.